Efi Boot

Summary :

/efi/boot/ Copy the file shell.efi to the directory created above. This file is attached to this article in shell.zip. Rename the file shell.efi to BOOTX64.efi; Restart the system and enter the UEFI menu. Select the option to Boot from USB. Try to reproduce the problem that is seen in the Drive Encryption Preboot Authentication screen. Type sudo mkdir /boot/efi to create the standard mount point for the EFI System Partition (ESP). Type sudo mount /dev/sda1 /boot/efi to mount the ESP at /boot/efi. (Change /dev/sda1 if your ESP has an unusual partition number.) You can use gdisk to check the ESP's number, if you like. Type ls /boot/efi. See full list on lifewire.com.

Efi

What is UEFI boot mode? How to create a UEFI bootable USB? How do I boot from USB in UEFI mode? If you are also troubled by these questions, this post of MiniTool is what you need. It will provide you with detailed steps and clear screenshots.

Quick Navigation :

About UEFI Boot

Why do so many people want to create a UEFI boot USB? In order to create a UEFI bootable USB successfully, it is necessary to figure out the following 2 questions first.

What Is UEFI

UEFI (Unified Extensible Firmware Interface) is known as a motherboard firmware interface for computers. It serves as a “middleman” between your computer’s firmware and the operating system. With UEFI boot mode, your computer can initialize the hardware components and boot the OS stored on the hard disk.

In recent years, UEFI boot mode seems to be the successor to the BIOS. More and more users tend to boot their computer in UEFI mode. This is because the UEFI mode breaks many limitations of BIOS mode, including the restrictions on the size of hard drive, booting process, number of partitions, and security.

In a word, UEFI boasts more advanced features compared with BIOS. Here we summarize them as follows:

Tip: If you want to know more details about UEFI vs BIOS, you can read this post “UEFI vs. BIOS – What’s the Differences and Which One Is Better”.
  • UEFI allows users to handle a storage device that is larger than 2TB, while the old legacy BIOS cannot handle so large d
  • With UEFI boot mode, you can create more than 4 primary partitions on a GPT disk.
  • UEFI supports secure startup. It is capable of checking the validity of the operating system to prevent malware from tampering the startup process.
  • UEFI firmware supports various optimization and enhancement, which can help your system boot more quickly than it could before.
  • UEFI supports both 32-bit and 64-bit architectures, which helps the computer use more RAM to handle a more complicated process than BIOS.
  • Under the UEFI mode, the computer supports networking function that can help remote troubleshooting and UEFI configuration.
  • UEFI has much more setup menus and simpler graphical user interface than legacy BIOS.

What Support UEFI Boot Mode

UEFI has lots of advantages over BIOS, but not all computers and devices are supported. In order to boot from USB in UEFI mode successfully, the hardware on your hard disk must support UEFI. One of the most important things is to make sure that your system disk is GPT form. If not, you have to convert MBR to GPT disk first.

Efi Boot Option

If your hardware doesn’t support the UEFI firmware, you need to purchase a new one that supports and includes UEFI.

Now, you may have an overall understanding of UEFI boot mode. Let’s see how to create a Windows 10 UEFI boot stick. Please keep reading the following part carefully.

How to Create a UEFI Bootable USB

How to create a UEFI boot USB? Before starting the following steps, you need to prepare a USB flash drive with 8GB space at least.

Method 1. Use Windows Media Creation Tool

Windows Media Creation Tool is one of the most common ways to create a bootable USB drive. Similarly, you can use it to create a UEFI boot USB.

Tip: This method is suitable for those computers that are using UEFI firmware. To create a UEFI boot USB, you can perform a clean installation or in-place upgrade of the OS.

Now, let’s see how to create a Windows 10 UEFI USB via Windows Media Creation Tool.

Step 1. Make sure the USB flash drive is connected to your computer.

Step 2. Click here to download the Windows Media Creation Tool from Microsoft's official website and save it on your computer.

Step 3. Run this program as an administrator and click on Accept to agree with the license terms.

Step 4. In the pop-up window, click the second option Create installation media USB flash drive, DVD, or ISO file) for another PC and click on the Next button.

Step 5. Then check the box Use the recommended options for this PC and click on Next to go on, which will automatically select the language, edition, and architecture that match with your computer.

Tip: You can also select the Language, Windows Edition, and Architecture that you want to create for the Windows 10 UEFI USB.

Step 6. Select the USB flash drive option and click on Next to go on.

Step 7. Then select the USB flash drive from the Removable drives list and click on Next to go on. If you don’t find the USB drive, click on the Refresh drive list option.

Step 8. Now, this tool will download the latest Windows 10 installation files that you select above on your device. Once the download is completed, click on Next to start creating the Windows 10 bootable USB.

Step 9. Once you see the screen Your USB flash drive is ready, click on the Finish button.

Now, the Windows 10 UEFI boot stick has been created. You can use it to boot your computer and install Windows 10.

In addition to using the tool of Microsoft, here are another 2 effective utilities that can help you create a UEFI boot USB.

Method 2. Use Rufus

Rufus is an open-source program that can create a UEFI bootable USB by using an existing ISO file. Connect your USB flash drive to the computer and then follow the steps below:

Step 1. Click here to download Rufus and install the program on your PC.

Step 2. Launch this program to open its main interface, and then select the USB flash drive from the Device menu.

Step 3. Click on the Select button under the Boot selection tab, and then select the Windows 10 ISO file from its folder path.

Step 4. Select the Standard Windows installation option from the Image option drop-down menu.

Step 5. Select the GPT option from the Partition scheme drop-down menu.

Step 6. Select the UEFI (non-CSM) option from the Target system drop-down menu

Step 7. Then you can click on Show advanced drive properties section and keep the default settings.

Step 8. Enter a name for the USB drive in the Volume label field, and then you can select a File system and cluster size from the drop-down menu.

Step 9. After the Format Options are confirmed, click on the Start button.

Step 10. Click on the OK button to confirm this process and click the Close button.

After finishing the above steps, this tool will create a UEFI bootable USB drive automatically.

Efi Boot

Method 3. Use MiniTool Partition Wizard

MiniTool Partition Wizard is another effective tool that can help you create a UEFI boot stick. It is a reliable partition manager that boasts many powerful features such as resize partition, convert FAT to NTFS without data loss, convert MBR to GPT disk, migrate OS to SSD, etc.

As mentioned above, the UEFI mode requires a GPT disk. If your USB is the MBR partition table, you need to convert it to GPT first. MiniTool Partition Wizard can help you convert MBR to GPT without data loss. It is very simple to operate. Here’s how:

Step 1. Connect the USB flash drive to your computer and launch this program to get its main interface.

Step 2. Select the USB drive and click on Convert MBR Disk to GPT Disk feature from the left pane.

Step 3. Click on Apply to execute the pending operation.

After your USB flash drive is converted to GPT, you can move your Windows 10 to this drive. To do so, continue the following steps.

Step 1. In the main interface, select the Migrate OS to SSD/HD Wizard feature from the left pane.

Step 2. Select Option B to copy the system required partitions only and click on Next to go on.

Step 3. Select the USB drive and click on Next. Then you will see a warning message saying that all the data on the target disk will be destroyed. Click on Yes to confirm this operation.

Note: Please back up all important data on the USB drive in advance.

Step 4. Select a copy option based on your needs and click on Next to continue.

Step 5. Click on the Finish button. At last, click on Apply to execute the pending operations.

After that, Windows 10 will be migrated to the USB drive. You can set the USB as the first boot order and use it to boot your computer.

Now, another question comes into being. How do I boot from USB in UEFI mode? Please keep reading the following part.

How Do I Boot From USB in UEFI Mode

In this part, we mainly focus on how to boot from USB in UEFI mode. You need to enable the UEFI mode first and then use the UEFI boot USB to start your computer.

Step 1. Power on your computer, and then press the F2 keys or other function keys (F1, F3, F10, or F12) and the ESC or Delete keys to open the Setup utility window.

Step 2. Navigate to the Boot tab by pressing the right arrow key.

Step 3. Select the UEFI/BIOS Boot Mode, and press Enter.

Step 4. In the pop-up window, select the UEFI Boot Mode by pressing the up and down arrow keys, and then press Enter.

Step 5. Press the F10 key and Enter to save the change and exit the window. Here the key depends on your specific computer manufacturer. After that, you can try using the bootable USB to start your computer in UEFI mode.

Wrapping Up

How to create a UEFI bootable USB on Windows 10? Now, I believe that you already have known the answer. Bear in mind that you need to make sure the drive is GPT partition table so that you can use it to boot your computer in UEFI mode successfully.

If you have any questions about this software, you can send us an e-mail via [email protected]. We also appreciate any ideas about this topic in the comment area.

UEFI Boot USB FAQ

UEFI boot mode is a type of boot mode that can run on the top of PC’s advanced firmware. Compared with the old legacy BIOS, UEFI has many distinct advantages such as faster booting process, more primary partition, and more secure startup.

To enable the UEFI boot mode, you need to access the BIOS Setup utility and then operate further. Here’s how:

  1. Press F10 and ESC (or Delete) keys when booting your computer to open the BIOS Setup utility.
  2. Go to the Boot tab and select the UEFI/BIOS Boot Mode by using the arrow keys, and press Enter.
  3. Select the UEFI Boot Mode by pressing the up and down arrow keys and press Enter.
  4. Press F10 keys to save the changes.
Since the EFI partition is a system and protective part on your hard drive, you can’t delete it in Disk Management. You need to convert it to a basic data partition using Diskpart and delete it. Alternatively, you can use professional software to delete EFI partition.

You need to prepare a Windows 10 bootable USB and follow the steps:

  1. Connect the USB drive to your computer.
  2. Press the appropriate key to enter the BIOS menu.
  3. Select the USB drive as the first boot order and save the change.
  4. Restart your computer.

by Rod Smith, rodsmith@rodsbooks.com

Originally written: 1/2011; Last Web page update: 6/17/2013 (last major update: 5/4/2012)

I'm a technical writer and consultant specializing in Linuxtechnologies. This Web page is provided free of charge and with no annoyingoutside ads; however, I did take time to prepare it, and Web hosting doescost money. If you find this Web page useful, please consider making asmall donation to help keep this site up and running. Thanks!

Donate $1.00Donate $2.50Donate $5.00Donate $10.00Donate another value

Note: This page is written using a rather elderly 32-bit Mac Mini as a reference, and using Ubuntu 12.04 as a reference. Developments in the last year have rendered certain of the procedures on this page sub-optimal. I've tried to point these out, but I haven't fully researched better replacements, and I lack the modern hardware on which to test some of the better methods on more recent 64-bit Macs. Thus, you may need to deviate from these instructions on modern computers.

The Problem

When installing Ubuntu Linux on an Intel-based Macintosh, most peoplefollow any of several guides available on the Internet, such as thisUbuntu document. Most of these guides, however, rely on features of theMacintosh that are intended to enable it to boot Windows. In particular,these guides typically end up creating a configuration that boots Linuxusing its Compatibility Support Module (CSM), which provides BIOSemulation on the Mac. In this mode, the Mac sets up a Basic Input OutputSystem (BIOS) layer that the OS can use, rather than rely on the ExtensibleFirmware Interface (EFI) that OS X uses to run on the computer. BIOSemulation is expedient, and it's the only way that most versions of Windowscan boot directly on a Mac, but it's got several drawbacks:

  • Longer boot times—BIOS emulation is widely regarded as slowing the boot process. I've not tested this effect myself, so I'm not sure how significant it is.
  • Reduced graphics card flexibility—On some models with multiple graphics chipsets, you can't select which chipset to use in BIOS mode, but you can in EFI mode. My own Mac isn't one of the affected models, so I can't comment further on this issue.
  • Use of a hybrid MBR—Intel-based Macs use the GUID Partition Table (GPT) rather than the more common Master Boot Record (MBR) partitioning system. Windows, however, can't boot from GPT disks on BIOS-based computers (which it thinks a Mac is thanks to Apple's BIOS emulation). Therefore, Apple uses an ugly and dangerous hack known as a hybrid MBR, in which a GPT data structure known as the protective MBR is altered to make the disk look like an MBR disk to Windows. The trouble is that hybrid MBRs frequently cause problems. In fact, even the Ubuntu installer often gets it wrong; it tries to be helpful by creating a hybrid MBR, but depending on your partition layout, it can create a partition table that the popular libparted-based partitioning tools won't touch.

As far as I can tell, BIOS emulation mode only works when a hybrid MBRis present on the hard disk or when a BIOS-bootable optical disk isinserted in the optical drive. Thus, you can't use BIOS emulation mode witha conventional GPT disk unless you plan to use a bootable optical disc toboot Linux.

Ubuntu can use the BIOS emulation and hybrid MBR that enable Windows toboot on Macs, but it doesn't need to! If you don't use thesefeatures, you won't see their problems. Hybrid MBRs, in particular, are aBad Idea (with a capital B and a capital I). I've seen numerous problemsreported at the Ubuntu Forums relatedto Ubuntu installations on Macs with hybrid MBRs, and more problems withsimilar configurations elsewhere. See my hybrid MBR Web pagefor a technical description of what they are and what can go wrong withthem. In short, they can get out of sync, cause confusion about whichpartition is which, and become damaged in frustrating ways. Whenever Ithink I've heard of every possible problem with hybrid MBRs, I stumbleacross a new one. You're better off without one, if that'spossible—and it is, if you dual-boot OS X and Linux but notWindows.

The trouble is that Ubuntu doesn't support installing to a Mac in EFImode, at least not as of version 12.04. (Some sources claim that this nowworks on some later versions, but I haven't tested this claim—indeed,I lack the hardware to do so!) The normal 64-bit discs can boot on PCs ineither BIOS mode or (if the PC supports it) UEFI mode (UEFI being,essentially, EFI 2.x). These discs reportedly do not boot on Macs(although I suspect they might with the help of rEFIt or rEFInd). The 32-bit Ubuntuinstallation discs lack EFI support. Ubuntu has also released 64-bit discimages for Macs. Ironically, these boot only in BIOS mode! Therefore, torid your computer of the dangerous hybrid MBR, you'll need to jump throughsome hoops. An alternative to all of this is to run Ubuntu in a virtualenvironment, such as VirtualBox.This can be a good solution in some cases, but it doesn't give Linux directaccess to the hardware and you'll lose some speed.

Some Caveats

Although my opinion is that Intel-based Macs are best booted using EFIand a GPT with a protective MBR rather than a hybrid MBR, there aredrawbacks to doing it this way. These include:

  • No Windows—As noted earlier, Windows relies heavily on BIOS emulation to boot on a Mac; therefore, if you want to triple-boot OS X, Linux, and Windows, you'll need a hybrid MBR to boot Windows. (You might, however, consider dual-booting OS X and Linux and run Windows in a virtual machine such as VirtualBox. This will eliminate the need for BIOS emulation and hybrid MBRs.) In theory, you could triple-boot with a hybrid MBR but still use EFI mode to boot Linux. I've not tested this, and the benefits are greatly reduced since you've still got the hybrid MBR on your hard disk.
  • Limited nVidia driver support—The biggest caveat to booting Linux in EFI mode on Macs is that some Linux video drivers, particularly for nVidia chipsets, don't work well when you boot in EFI mode. Thus, if you've got a Mac with an nVidia video chipset, you'll need to use the less capable fbdev drivers rather than the faster nVidia drivers. My own first-generation Intel Mac Mini uses an Intel video chipset and is not affected by this problem, so it doesn't bother me, but it could be a deal-breaker for you. I've seen some suggestions that these problems are less serious now (in April of 2012) than they were a year or two ago. The UEFIBooting page has some notes on specific Mac models' video support when booted in EFI mode; see the table under 'Tested Configurations' about 2/3 of the way down the page.
  • Missing hardware features—I've seen reports that Linux features such as screen brightness control and suspend/resume may not work correctly when booting using EFI. I don't use such features, so I can't comment personally.
  • Virtual terminals—I've seen reports that text-mode virtual terminals don't work from an EFI boot; however, this limitation doesn't apply to my computer. Perhaps it interacts with the video chipset, framebuffer driver use, kernel version, or some other variable.
  • OS architecture limitations—Older Intel-based Macs, such as my Mac Mini, use 32-bit CPUs and EFIs. Newer models come with 64-bit CPUs and EFIs. If you try to run a 32-bit distribution on a 64-bit EFI, you may not have access to EFI Runtime Services. This can reportedly limit some features, but I'm a bit unclear about the details. In my opinion, it's best to stick with 64-bit distributions on 64-bit hardware even on BIOS-based computers, so I don't see this as a big problem.

If you're running Fedora, CentOS, Mandriva, OpenSUSE, Gentoo, Debian, ormost other Linux distributions, the procedure I'm about to describe willprobably work; however, some details may differ. In fact, at one time oranother, I've installed Ubuntu, CentOS, and OpenSUSE on my Mac Mini, allusing EFI-mode boots. It's possible that your preferred distributionalready supports direct EFI installation, in which case the problem ofinstalling to a Mac in EFI mode may not exist. Check your distribution'sdocumentation to be sure.

I've tested this procedure only on my first-generation Intel-based MacMini. This computer uses a 32-bit CPU and 32-bit EFI, so I've tested onlythe 32-bit version of Ubuntu. It's possible that the 64-bit version hasdifferent requirements, or you may need to do things differently on newer64-bit Macs. You can check which type of EFI you've got with the followingcommand, typed in an OS X Terminal:

The result should include the string EFI32 or EFI64;the meaning of each should be obvious.

Prerequisites

Before proceeding, you'll need to download a few items:

  • Ubuntu Linux—You can obtain Ubuntu from its main Web site. The Web site describes the 32-bit version as 'recommended,' but lacks such a description for the 64-bit version. Don't worry, though; the 64-bit version works fine for almost everything. Remember that you'll probably need the Mac-specific version to boot on a Mac if you've got a 64-bit system. This version can be harder to track down; I used this torrent list. I recommend using the 64-bit version if you've got a 64-bit EFI, as described earlier. (Note that the string AMD64 appears in many places in reference to the 64-bit version of Ubuntu, but this version works fine on Intel's x86-64 CPUs; the AMD64 string is used simply because AMD invented the architecture.) I used a desktop version of Ubuntu 12.04 as a reference for this Web page, but the basic procedures should be similar for the server or alternate installer, as well as for Ubuntu variants such as Kubuntu and Edubuntu. I strongly recommend installing Ubuntu 12.04.2 or a more recent version rather than the original 12.04, since more recent versions come with kernels that include an EFI stub loader, which can simplify certain configuration procedures. Burn the disc and check that it includes directories called boot, install, isolinux, and so on. If you prefer to use a USB flash drive or similar device, you can do so. See Ubuntu's Installing Ubuntu Desktop page for instructions on creating bootable USB flash drives under various OSes.
  • GPT fdisk (gdisk)—Go to the GPT fdisk Sourceforge download page and download the Mac (gdisk-version.pkg) package. Install this package in OS X. Once you have Linux installed, you may want to install the Linux version from the Ubuntu repositories (it's in a package called gdisk.)
  • Super GRUB 2 Disk—Download this handy CD image from its home page. Be sure to get Super GRUB 2 Disk, not Super GRUB Disk. Burn the disc image like you burned the Ubuntu install disc image, or copy it to a second USB flash drive.
  • rEFInd—This is a fork of the earlier rEFIt Mac boot manager. It's part of the boot process as described on this Web page. Download either the ISO image or the binary .zip file from its Web page. If you're already using rEFIt, you can continue to use it rather than install rEFInd; however, rEFIt appears to have been abandoned, and rEFInd adds many improvements, so you may want to upgrade sooner or later.

With these items in hand, you can proceed with installing Ubuntu, andthen fix it up so that it doesn't use a hybrid MBR.

Installing Ubuntu

If you've already got a working dual-boot configuration with OS X andUbuntu, you can skip this section and jump ahead to 'Fixing the Installation.' You may be able to skip someof the steps in that section, too, such as rEFInd installation.

To install Ubuntu Linux 12.04 on an Intel-based Mac, follow thesedirections:

  1. If necessary, install Mac OS X.
  2. Boot into Mac OS X.
  3. If necessary, using OS X's Disk Utility, adjust the sizes of your partitions, making room for Linux. Note that resizing partitions is inherently dangerous, so back up your data before beginning! You may also want to create a FAT or unjournaled HFS+ ('Mac OS Extended') shared-data partition. The result might look like the below (the Linux partition in this screen shot could as easily be blank space; I've created it here mainly to show you where Linux will reside).
  4. If you haven't done so already, install the OS X version of GPT fdisk (gdisk).
  5. Open a Terminal program.
  6. In the Terminal program, type sudo gdisk /dev/disk0 (change /dev/disk0 to /dev/disk1 or above if your computer has multiple hard disks and the one on which you want to install Ubuntu isn't /dev/disk0).
  7. In gdisk, type p to display your partition table. Verify that it's the same one shown by Disk Utility. (Note that Disk Utility hides the EFI System Partition (ESP), which is normally the first partition on the disk.)
  8. If you created a Linux partition, type d in gdisk to delete it. Enter its number when prompted. (If you created multiple partitions for Linux with the intention of using them as you created them, you can skip this step.)
  9. In gdisk, type n to create a new partition. Give it a number of 99, hit the Enter key to use the default starting sector (the program may tell you it's changed the sector value, but you can ignore this message), +128M as the ending sector, and a hex code of ef02. This creates a BIOS Boot Partition of 128 MiB at the start of the largest block of free space on the disk. This partition will be used by the initial Ubuntu GRUB installation, but you can delete it once you've got native EFI booting working. 128 MiB is actually much bigger than is required for this purpose, but OS X likes to see gaps between partitions when it installs or upgrades the OS, so when you eventually delete this partition, it will leave the type of gap that OS X likes to see. (If you created all your Linux partitions in OS X's Disk Utility, you can put the BIOS Boot Partition in one of the gaps that Disk Utility leaves, but you may need to accept a default value or use +1M rather than enter +128M as the end value.) Type p again to see the results; they should look something like this (although I've got two OS X partitions):
  10. In gdisk, type w to save your changes. When asked, type y to confirm this choice.
  11. Insert your Ubuntu installation CD or DVD in the computer's drive, or plug in the USB flash drive that holds the Ubuntu installer.
  12. Restart your Mac and hold down the Option key (Alt if you're using a PC keyboard) as it restarts to get the Mac's OS selection screen.
  13. Pick the Ubuntu install disc from the options. (It may be mis-labelled as 'Windows.') The Ubuntu installer will start up. If you're using a CD and the installer doesn't boot, try using a USB flash drive instead.
  14. When the appropriate screen comes up, select Install Ubuntu and proceed with a normal Ubuntu installation, except as noted in the next few steps....
  15. When the Installation Type dialog box appears, select 'Something Else.'
  16. You will initially see a partitioning screen with your original OS X partitions, a biosgrub partition (what Ubuntu's partitioner calls the BIOS Boot Partition), and free space at the end of the disk. Select the free space and click Add to begin adding partitions....
  17. Create partitions for your Ubuntu installation in the free space near the end of the disk. (If you did this in OS X's Disk Utility, you should modify each partition by selecting it and clicking Change, then clicking the Format option and setting an appropriate filesystem and mount point.) I recommend creating the following partitions:
    • /boot—500 MiB, ReiserFS or ext2fs. This partition is optional. It can simplify some types of boot loader configurations, particularly if you want to use XFS, JFS, or Btrfs on your root (/) partition.
    • / (root)—5–25 GiB, ext4fs or your preferred Linux filesystem. This partition is absolutely vital. If you choose not to create a separate /home partition, make the root partition suitably larger. Take note of the number of this partition (7 in the below screen shot).
    • swap—1–2 times your system's RAM size.
    • /home—The rest of your available disk space, in ext4fs or your preferred Linux filesystem. You can merge this with the root (/) partition if you're short on space or plan to store little in the way of Ubuntu-specific files. Having a separate /home partition simplifies OS re-installations and some types of upgrades, though.
    When you're done, you'll see your new partitions displayed....
  18. Be sure that the 'Device for boot loader installation' option is set to /dev/sda (it will include a complete name for your hard disk—I used VirtualBox to collect the last few screen shots, but yours will show a real disk model number).
  19. Click Install Now. The installation will proceed as on a PC. You can find generic installation guides online, such as this one at the Ubuntu site.

When the installation finishes, the computer will reboot—straightinto Mac OS X! (See the below note if it doesn't boot, though.) You mustnow proceed with fixing it up in various ways....

Fixing the Installation

If you've followed the directions, your computer should now be bootedinto OS X, looking very much like it did before. Ubuntu isinstalled, however, and your disk has a hybrid MBR. You must now take stepsto return the hybrid MBR to a safer protective MBR, as the GPT standardrequires, and to set up a boot loader that enables you to select which OSto boot when the computer powers up. To do so, follow these steps:

  1. In OS X, launch a Terminal.
  2. Type sudo gdisk /dev/disk0 (changing the disk identifier as necessary). If at any point in the next few steps something seems wrong, type q to exit without saving your changes.
  3. In gdisk, type x. The command prompt will change to read Expert command (? for help):.
  4. In gdisk, type o. This command displays the contents of the hybrid MBR, which will probably consist of four partitions, one of which is of type 0xEE. The Ubuntu installer created a hybrid MBR (if one wasn't already present) in an attempt to be helpful.
  5. In gdisk, type n. The program won't seem to do anything; it will just show you another command prompt.
  6. In gdisk, type o again. The MBR contents should be different from before; there should just be one partition, of type 0xEE. This is a standards-compliant protective MBR.
  7. In gdisk, type w to save your changes.
  8. Unpack the rEFInd zip file you downloaded earlier. If you downloaded the CD image, mount it.
  9. In the Terminal, change into the directory created by unpacking the rEFInd zip file, or to the CD image's mount point.
  10. Type ./install.sh. This runs a script that installs rEFInd to your OS X boot partition and 'blesses' the program so that the Mac will use it when you next boot. If you're using whole-disk encryption on your OS X partition or if you want to install rEFInd to the ESP rather than to the OS X boot partition, type ./install.sh esp rather than ./install.sh.

    Update:If you're using a 3.3.0 or later kernel, you can skip most of the rest of this page, and instead perform a much simpler operation:

    1. Copy an EFI driver for the filesystem you used on /boot (or your root filesystem, if you didn't split off /boot) from the rEFInd package to the drivers subidrectory of the rEFInd installation directory, which is normally /EFI/refind. Note that you must copy the driver for your EFI's architecture—architecture codes appear in the filesystem drivers' filenames. If you did not use ext2/3/4fs or ReiserFS on /boot, this variant procedure will not work.
    2. When you reboot, highlight one of the Linux options that refers to a file called vmlinuz-version, where version is a version number.
    3. Press F2 or Insert twice to open a line editor.
    4. Add roroot=/dev/sda5 to the kernel options, changing/dev/sda5 to your root filesystem's identifier.
    5. Press Enter. This should boot Linux, although the screen might go completely blank for a few seconds.
    6. If it doesn't already exist, create a directory called /boot/efi.
    7. Edit /etc/fstab and add an entry to mount your ESP (normally) /dev/sda1 at /boot/efi. The entry should resemble the following:
    8. Type mount -a to mount the ESP at /boot/efi.
    9. Run the mkrlconf.sh script that comes with rEFInd, as in sudo ./mkrlconf.sh, typed from the directory where the file exists. This action should create a file called /boot/refind_linux.conf, which is briefly described in the Improving the Boot Method section.

    At this point, it should be possible to boot Linux by rebooting thecomputer and selecting one of the vmlinuz-version entriesin rEFInd's menu. If this doesn't work, continue with the main proceduredescribed here....

  11. Load /efi/refind/refind.conf into a text editor and locate the commented-out scanfor line. (If you installed rEFInd to the ESP, you'll need to mount the ESP and load the configuration file from there.) Uncomment the scanfor line by removing the leading hash mark (#) and then add a new item, cd, to the end of the line. It should read scanfor internal,external,optical,cd. (If you're using USB flash drives, add biosexternal instead of or in addition to cd.)
  12. Reboot. The rEFInd menu should appear, as shown below. Your menu options might differ from these, though. (This system has two OS X installations and a working OpenSUSE installation accessible via two entries.)
  13. Insert the Super GRUB 2 Disk into the computer's DVD drive.
  14. Restart your Mac by selecting the reboot item (the yellow icon with the circular arrow on the far right of the row of smaller icons).
  15. When the rEFInd menu re-appears, you'll see a new Linux icon on the far right of the display. (Depending on your screen's size and the number of OS loaders rEFInd discovers, you may need to scroll over to see it.) Select it.
  16. After a while, a GRUB 2 menu should appear. Pick the Detect any GRUB 2 installation (even if MBR is overwritten) option from the menu. Note: On my system, if I leave this menu up for more than two or three seconds, it hangs at this point. If yours is the same, you'll need to act quickly!
  17. A new menu should appear listing the GRUB 2 installations it could locate. On my system, this consisted of a grand total of one installation, identified as (hd1,gpt6)/grub/core.img, so there's no ambiguity: Select it! (Of course, your disk device numbers are likely to differ from mine.)
  18. At this point, a normal Ubuntu GRUB 2 menu should appear, enabling you to boot Ubuntu as you would on a PC. (The screen may go completely black for part of the boot process. Don't worry; this is normal.)
  19. When the login screen appears, log into your Ubuntu installation.
  20. Click Dash Home (the icon in the upper-left corner of the screen) and type term in the search field. A few icons should appear, including one called Terminal. Click it to launch a Terminal program.
  21. Type sudo mkdir /boot/efi to create the standard mount point for the EFI System Partition (ESP).
  22. Type sudo mount /dev/sda1 /boot/efi to mount the ESP at /boot/efi. (Change /dev/sda1 if your ESP has an unusual partition number.) You can use gdisk to check the ESP's number, if you like.
  23. Type ls /boot/efi. You should see the contents of the ESP, which will probably consist of a single directory called efi. There could be other files and directories, but probably not many of them. If it appears you've mounted the wrong partition, review your partition layout and the commands you've typed to mount the ESP. Proceed only when you're sure you've mounted the ESP at /boot/efi.
  24. Type sudo apt-get install grub-efi. This replaces the BIOS version of GRUB that the Ubuntu installer installed with an EFI-based version of GRUB. In fact, there are two different EFI-enabled versions of GRUB: grub-efi-ia32 and grub-efi-amd64. Installing grub-efi installs the package that's appropriate for your system, assuming you installed the optimum architecture. If you're running a 32-bit version of Ubuntu on a recent 64-bit OS X firmware, you may need to explicitly install grub-efi-amd64. Installing grub-efi also installs a number of dependencies, such as efibootmgr
  25. Type sudo mkdir /boot/efi/efi/ubuntu/. This command creates a home for GRUB on the ESP. (Note the doubled-up efi in the path. This is not a typo.)
  26. Type sudo grub-install. (Recent versions of GRUB seem to require an option. Pass it your ESP's device filename, as in sudo grub-install /dev/sda1.) You'll see a few messages appear on the screen, including a couple of 'fatal' errors about EFI variables. Ignore those messages. They're caused by the fact that you're booted in BIOS mode, and they're irrelevant because the task they're intended to perform will be handled by rEFInd.
  27. Type ls -l /boot/efi/efi/ubuntu. You should see two files, boot.efi and either grubia32.efi or grubx64.efi, depending on your platform. They should have the same file size; in fact, they're identical.
  28. If both of those files are present, remove one of them; having both will just clutter your rEFInd menu unnecessarily. If you somehow wound up with just one file, though, leave it in place. If you don't see either file, then do some troubleshooting now; you won't be able to boot into Ubuntu without one of those files (or some other EFI boot loader for Linux).

At this point, if you did everything exactly correctly, you should beable to boot Ubuntu in EFI mode. When you reboot, your rEFInd menu shouldinclude a new Ubuntu option, as shown below. Select it and your GRUB menushould appear; it will resemble the one shown earlier, although it may usea different font and color scheme.


Once you're satisfied with your ability to boot and use both Linux andOS X, you can delete the BIOS Boot Partition from your hard disk. It'sno longer needed, but OS X may want free space where it resides in thefuture. You can use GParted, parted, gdisk, or any otherpartitioning tool to delete this partition.

Although my own system doesn't seem to suffer from its presence, it'sconceivable that some Macs will experience boot-time slowdowns because ofthe presence of the BIOS version of GRUB's boot code in the hard disk'sMBR. If you think this is happening, you can type sudo dd if=/dev/zero of=/dev/sda bs=440 count=1 toeliminate it. Be very careful with that command, though! Beabsolutely positive that you've typed it correctly, and particularlythe bs=440 and count=1 numbers. If you write too muchdata in this way, you can damage your partition table!

If you've not used it before, you may want to peruse the rEFInd documentation. Althoughthe default options work well for most systems, you may want to tweak someof them or install ancillary programs, such as an EFI shell program.

You may want to add an entry for the ESP to your /etc/fstabfile so that it will be mounted automatically whenever you boot. Thefollowing line will do the trick on most systems:

Efi Boot 64

You can tweak this entry as you see fit. The /dev/sda1specification works for most people, but you could change it to use aLABEL or UUID specification, as inUUID=2B68-9A85. This will make the configuration more robustshould the disk identifier change because you boot with a different diskconfiguration or you repartition the disk. If you this change, you'll needto obtain the label or UUID value for your ESP. Typing blkid /dev/sda1 (changing the device identifier, ifnecessary) should do this.

Improving the Boot Method

Although GRUB 2 often works in a configuration like the one I've justdescribed, it also often misbehaves. For instance, on my brand-new Ubuntu12.04 installation (less than 24 hours old as I type), GRUB 2 often givesme a 'file not found' error when selecting the Ubuntu entry; then if Iselect the same entry, it boots fine. On other installations andcomputers, GRUB 2 has resulted in kernels that begin to boot and then fail;it's begun returning a grub> emergency prompt for no apparentreason; and it's done a poor job of detecting OSes and kernels. What'smore, on my Mac, Ubuntu's packaging system keeps trying to replacegrub-efi with grub-pc, which would result in anunbootable installation if allowed to continue! For these reasons, GRUB 2is the EFI boot loader that I favor least. That said, some peoplesay it works acceptably for them, and it's Ubuntu's default boot loader, soUbuntu's installation scripts usually do a tolerable to good job ofautomatically configuring it. These are the reasons I provided instructionsfor installing GRUB 2. I personally try to remove it as soon as possibleafter an installation, or at least shove it out of the way so that it can'tdo any real damage.

If you have problems with it, you can switch to another EFI boot loader.My EFI Boot Loaders forLinux Web page describes the options that are available. If you'vefollowed the directions on this page, my personal favorite is actuallyquite close to working: If you can install a Linux kernel with the EFI stubloader support enabled, rEFInd can launch it directly, without the helpof GRUB. The major hurdle to overcome on this score is that Ubuntu 12.04installs a 3.2.0 kernel, but the EFI stub loader became available with the3.3.0 kernel. This is why I recommended installing Ubuntu 12.04.2, 13.04,or a more recent version of Ubuntu; these versions ship with 3.3.0 or laterkernels. In broad outline, to use the EFI stub loader, you must:

  1. Obtain a kernel with an EFI stub loader, either by finding a suitable binary package or by compiling the kernel yourself.
  2. Optionally install an EFI driver for the filesystem you used on your Linux /boot partition. This isn't required, but it can simplify setup by enabling the EFI to load the kernel from its normal home in /boot. If you omit this step, you'll need to copy the kernel to a FAT or HFS+ volume. (The possibility of using this approach to booting is why I recommended creating a separate ReiserFS or ext2fs /boot partition; those are the Linux filesystems for which EFI drivers are available.)
  3. Install the new kernel and initial RAM disk in a place where the ESP can read it. As just noted, this can be /boot if you've installed an EFI driver. If not, the ESP can work, at least in theory (it doesn't on my Mac Mini, but that may be a model-specific problem). An HFS+ volume is also an option. (Odd as it may sound, converting /boot to use HFS+ can work quite well on Macs—but not on UEFI-based PCs.)
  4. Either rename the Linux kernel file so that it includes a .efi extension or uncomment the scan_all_linux_kernels option in rEFInd's refind.conf file. The former method works best if you have kernels that do not have EFI stub loader support enabled in directories that rEFInd will scan. The latter method works well if you're using a distribution that provides suitable kernels and you've loaded drivers so that the EFI can read /boot.
  5. Create a file called refind_linux.conf in the directory that holds your kernels. This file holds kernel option sets, one per line, as in:

This refind_linux.conf file is taken from a workinginstallation, but you'll need to adjust the UUID value for your owncomputer if you use it as a model. When you boot, rEFInd uses the firstline's options by default, but by pressing F2 or Insert when you select akernel in rEFInd, you can choose another option set.

The beauty of this method of booting is that you don't need to changeconfiguration files when you install a new kernel—just place it, witha suitable filename, in the kernel directory and rEFInd will detect it anduse the options from refind_linux.conf to boot it. Although GRUB 2is supposed to be as easy to use, it accomplishes this goal by running aseries of configuration scripts whenever you install a new kernel andupdating its configuration file. This process can go wrong, particularly inadvanced or exotic setups.

If you have problems with GRUB 2, ELILO and GRUB Legacy are the bestoptions, as described on my EFI boot loaders page.Each has advantages and disadvantages. On my Mac Mini, ELILO doesn't work,but that may be a model-specific quirk. Unfortunately, you'll need toadjust either boot loader's configuration whenever you upgrade your kernel,so keep an eye on that!

Going Further

You can consult the UEFIBooting page tolearn about more options for GRUB on a Mac. Some of that page'sinstructions didn't work for me, though; presumably they're either specificto particular Mac models or the page is dated.

I hope you've found this Web page informative. I realize the proceduresoutlined here are complex, but in my opinion, it's worth getting rid of theflaky and dangerous hybrid MBR even if doing so requires investing theeffort described here.

References

The following sites have additional information that you might finduseful:

  • The Linux on Your Apple Mac wiki has a variety of information on Linux/Mac integration.
  • The Arch Linux on a Macbook Air 4,2 site describes an EFI-only installation of Arch Linux on a Mac.
  • I guess Arch people like Macbooks, since there's another site with instructions on installing Arch to a Macbook Air using an EFI boot.
  • The Booting Linux Inside a MacBook Using GRUB and EFI page outlines the process with an emphasis on Debian and Ubuntu.
  • My EFI Boot Loaders for Linux page describes all of the major Linux boot loaders and boot managers for EFI-based computers.
  • My Linux on UEFI: A Quick Installation Guide page provides helpful tips on how to install Linux on EFI-based systems.
  • You can learn about additional tweaks for rEFInd at its official documentation site.

If you have problems with or comments about this web page, pleasee-mail me at rodsmith@rodsbooks.com. Thanks.

Return to my main Web page.